
SiMulPro Core Emulations Show Near Linear
Performance Scale-up with Inner Loop

Optimization of an O(N2) Function

Earle Jennings1

1 CTO, QSigma, Inc.
305 Calle Estado, Santa Fe, NM 87501, USA

ewj@ix.netcom.com

Abstract. The SiMulPro® core is a practical non-von Neumann archi-
tecture. It is implemented in C++, targeting the Programmable Logic
(PL) fabric of a Xilinx SOC, containing the host computer. The core is
experimentally confirmed as a Time Division Multiple Access (TDMA)
computer. A first and second experiment test an O(N2) C function (from
a standard reference, solving a real world problem). A data memory ar-
ray, required by TDMA, is implemented in the PL fabric using 128 in-
stances of data memory cells, each performing up to 1 read and/or 1 write
on each clock. The data memory array responds to requests from, and
delivers results to, the core stripes. Experimental results are shown for
N=1,000, 4,000 and 10,000 runs. The first experiment confirms near lin-
ear scaling from 1X to nearly 128X, by the core operating a single time
slot, in a single stripe, to 128 time slots operating 16 stripes, when per-
forming optimized inner loops. The single time slot, in a single stripe, is
comparable to a microprocessor operating without cache, superscalar in-
terpreter, or multi-thread controller. The second experiment extends the
time slot decision indicator tag, required by TDMA, for each stripe. This
experiment confirms a further 2X performance improvement, with near
linear scaling from 1X to nearly 256X. This core implements what is re-
quired for C, performs the optimized 3 inner loops of the function with
nearly 100% efficiency, and simplifies application code conversion.

Keywords: Non-von Neumann architecture, hardware-software
codesign, compiler, FPGA emulation, cache, superscalar interpreter,
multi-thread controller, microprocessor, big data, operating system, C,
C++, Fortran, TDMA, VLIW, virus, rootkit, core, SOC.

1 TDMA Application to Computer Architectures

TDMA is a staple of communications technology since the 1970’s. “In time-division
multiple access (TDMA), the available channel bandwidth in its entirety is used by
every user, but the users take turns in making use of the channel in a timely manner. In

2

other words, the channel is sequentially time-shared among many users through
nonoverlapping time slots in a circular manner (i.e., one after the other).” [14]. Unlike
most communication implementations, the SiMulPro core prototype is implemented in
the PL fabric. It is partitioned into time slots formed from a strict succession of pipes
executed on successive clock cycles. The core uses a single clock signal, operating
across the core. The clock is implemented as a single call from the host to the PL fabric
interface function named Target_Interface_App, in Fig. 1.

Fig. 1. The TDMA core as a strict succession of pipes.

On the first call to Target_interface_App, Task Wave Front 0 (TWF0) stimulates Inst Pipe 0.
On the next call (clock), Inst Pipe 0’s response to TWF0 of the previous call generates TWF1
sent to Inst Pipe 1, and so on. When the TWFs command the core to RunProgram, then each of
Inst Pipe 0 through Inst Pipe 3 responds with new Execution Wave Fronts (EWFs). Inst Pipe 4
copies its input EWF4 to create its EwfStatOut on the next clock.

Fig. 2 shows the two dimensional organization of the core into pipes and stripes. Each stripe
has a pipe component for each of the Pipes 1-7, and acts as a separate channel in the TDMA
organization. Each instance of Pipe 1 Stripes 0 to 0xf respond to a single TWF and EWF in one
clock shown in Fig. 1. All subsequent data processing instruction (inst) Pipes 2-4 respond to a
single TWF and EWF. This continues for the TWF from Auto Pipes 5 to 7.

Time slots encapsulate the latency of response to Process Index Waves (PIWs) described in
Fig. 3. There are 7 pipes after Pipe 0, so the response to an issued PIW traverses Pipes 1 to 7 and
is processed for rapid response by the Time slot Controllers (TsCtls) in Pipe 0 of each active
stripe to generate a new EWF in one clock cycle. Therefore, the response latency to PIW2 is 7+1
clocks, so each stripe needs eight TsCtls. The upper entries with ProcIndex 0 form the first PIW
through the Instructed Pipes 0 to 4, the upper entries for Auto Pipes 4 to 7 are the automated
response to stimulus initiated by Pipe 4 which affects feedback and local data memory access.
The Process Index (ProcIndex) determines the local instruction fetched by each instructed re-
source of each instructed pipe.

3

Fig. 2. The TDMA channels of the core of Fig. 1 are the 16 stripes.

Fig. 3 and Fig. 4 have two separate uses based upon two separate interpretations.
The first interpretation assumes the first PIW is initiated on the first clock and the sec-
ond PIW is initiated on the second clock. In this interpretation, within a single Stripe
Controller (StpCtl) of Fig. 2, these PIWs originate from successor TsCtls. For example,
PIW0 may originate from TsCtl 7 and PIW1 from TsCtl 0 within the same StpCtl.

Fig. 3. Shows two Process Index Waves (PIWs) in one stripe, taking 8 clock cycles to traverse
the pipes of the core.

The second interpretation of Figs. 3 and 4 assumes that the PIWs originate from the
same TsCtl, so they are separated in time by 8 clock cycles. A stripe successively
initiates 8 PIWs before the results of the first PIW are available for the next PIW in the
same time slot. Programming the time slot is based upon this second interpretation and
forms the second use mentioned above.

As shown in Fig. 1, the 8 pipe stages imply the response latency is 8 clock cycles,
therefore the number of TsCtls required for the stripe is 8 instances. The Stripe Con-
troller hardware of each stripe successively selects which of its 8 TsCtls generates the
stripe’s specific EWF component shown in Fig. 6 hereafter.

The TDMA users of the core are Raw Operational (Op) Units, which perform the
data processing for a program up to the level of an inner loop. Each Raw Op Unit (ROU)
is decomposed into PIWs in at least one time slot of at least one stripe. Programming
them can be seen and reported as flat time models of the time slots as shown in Fig. 4.

4

Fig. 4. Shows the flat time description/programming of the PIWs within a time slot.

The ROUs implementing inner loops are decomposed into independent subloops, as
the TDMA users of a stripe. Each Stripe Controller in Fig. 2 delegates these users to its
TsCtl to time share the stripe. For a given time slot in a stripe executing an inner loop,
the stripe’s active (selected) TsClt provides the stripe’s EWF component with a ProcIn-
dex to access a VLIW instruction residing in each of the instructed resources, and a tag
with at least two runtime test bit results. The ProcIndex and tag for the stripe direct the
execution of the instructed resources in the PIW and/or the choice of the next ProcIndex
by the TsClt at the PIW’s completion of the time slot. If the TsClt determines its subloop
is done, another test bit result may be used to direct branching by the Branch Controller
shown in Pipe 0 in Fig. 2.

Von Neumann computers use branching to affect conditional processing of instruc-
tions, which is primary to the semantics of C. TDMA computers affect conditional data
processing instructions using a combination of traditional branching, local enable/dis-
able test conditions, and selection of the next PIW to perform within the TsCtl. This
TDMA mechanism delivers a large improvement in the bandwidth of computation and
local data memory access, which cannot be achieved by von Neumann computers [15].
The body of this paper describes the implementation of the SiMulPro core as a TDMA
computer on the PL fabric of the demonstration SOC. The inner loops of the C function
are derived and experimentally confirmed as the subloops controlled by the TsCtls and
performed by their stripe. The core is experimentally confirmed to provide a near linear
speedup of these inner loops enabled by the local data memory in the PL fabric provid-
ing up to 128 read and write accesses on each clock cycle.

The first experiment implements the compute intensive inner loop in Fig. 9, and is
confirmed to reduce the execution time of the main 2 layer loop runs by a factor of
between 95X and about 120X, depending upon N. The bigger N, the closer to 128X. A
second experiment confirms reducing the inner loop body from two Process Index
Wavefronts (PIWs) in each time slot to essentially one PIW, as shown in Fig. 11. This
improves the speedup of the test program runs from 1X to nearly 253X (getting closer
to 256X, the larger N becomes), discussed in section 5.

2 Prototype Objectives

The technical objectives are to configure the prototype to run a real world function
demonstrating a proof of concept for the following features of the SiMulPro core:
• A TDMA core can be built. This requires automated fixed latency paths for feedback

and local data memory access. Hardware determined data availability triggers data
processing actions through the generation of EWF components for each successive
Time Slot in each active stripe.

• Near linear performance scalability within the SiMulPro core for functions with
TDMA optimized inner loops without caches, superscalar interpreters and/or multi-
thread controllers.

5

• Minimal power for given performance: The implemented core, operating in a TDMA
manner upon the pipes, delivers essentially 100% performance of the inner loops of
the demonstration function. Note that if something is not used (such as floating point
in this test function) it can be turned off to minimize power.

• Security: The implemented core, by construction, is immune to infection by viruses
and root kits entering from data memory devices, data memories and data operations
[9]. Two other avenues of attack are removed in these experiments: The function
return stack does not reside in the data memory, cannot be altered by data operations,
and is immune to virus and rootkit infection. Function pointers are not supported,
because the functions do not reside in data memory.

• Implementing the semantics of C programs [3] is another objective. This enables
simplified conversion of existing programs and supports extension to most HPC
computing application languages.

The requirements are derived from extending hardware-software codesign to include
systems, compiler, application development and emulation engineering insights.

2.1 Systems Engineering Requirements

Von Neumann computer controls are replaced by a TDMA instruction processing
mechanism, optimizing the pipe utilization for the inner loops of O(Np>=2) C functions
[1], [2], & [17]. To achieve this, all pipe components must operate in a strictly sequen-
tial manner, without any disruptions, such as distribution of reset, interrupt, or fault
signal(s), and without waiting for the (variable) delays of caches, superscalar interpret-
ers and/or multi-thread controllers [8], [15], & [16].

Several time critical system functions need replacing by hardware primitives, re-
moving their fundamental bottlenecks [20] see Section 1.7. Data availability, and at
least one completion flag, must be integrated into the hardware to avoid otherwise in-
evitable operating system delays. Caches, superscalar interpreters, and multi-thread
controllers [8] and [16] must be replaced with much simpler hardware, operating far
more efficiently, as components required for the TDMA mechanism. A local data
memory array is implemented using 128 instances of data memory cells, each able to
perform 1 read and 1 write on each clock cycle, accessing a ram of 512 words (of 32
bits). The data memory array responds to requests sent from, and delivered to, the
stripes compatible with the TDMA principles. Replacing the superscalar interpreter
makes compiler and application development requirements, discussed below, essential.
The replacement of multi-thread controllers requires a discussion of simultaneous
multi-program implementations of the SiMulPro core, is beyond the scope of this paper.

2.2 Compiler Engineering Requirements

The prototype implements a C function’s semantic structure in the hardware configu-
ration. This is achieved for the test program through a series of canonical transfor-
mations, targeting a specific compiler internal representation, implemented in the hard-
ware controllers of Pipe 0 of Fig. 2. This is consistent with contemporary compiler
technology [4] to [6]. The example C application program is a quick find solution to a

6

connectivity problem found in Sedgewick [2] part 1, pages 11-13 & 20-21, also [16] &
[17]. The quick find’s first application forms part of the compilation of
EQUIVALENCE statements in Fortran compilers [16]. This program is labelled Sedge-
wick_1_1 hereafter. Sedgewick_1_1 is an O(N2) function with 3 O(N) inner loops. In
listing 1, the inner loop bodies are shown in red bold italics. The second inner loop
shown in the listing is the most time consuming. It inhabits the loop body of an O(N)
outer loop. This inner loop iterates on reading an indexed component of a vector id[i]
and compares that against a value t. If the comparison condition is met, a second value
idq is written to that vector component id[i]. It is tested against a final value N before
the index increments. The first and third inner loops are optimized in the experiments
to access eight consecutive data memory addresses per stripe. In the first inner loop as
block writes, and in the third, as block reads, of eight consecutive data addresses. List-
ing 1 is a conversion from the original C function, and does not require any alteration
to the C programming language.

Listing 1. Listing of Sedgewick_1_1.c main program function used in the experiments.
typedef unsigned int Uint;
void input_p_and_q(Uint* p, Uint* q);
void output_id(Uint idi);
Uint i, p, q, j, t, idq, N, L, idi, id[NMAX]; /* variables */
int Sedge_1_1_main(Uint N, Uint L) {
 for (i = 0; i < N; i++) id[i] = i;// first inner loop 1 writing
 for (j=0; j<L;) { // outer O(N)loop does not count here
 input_p_and_q(&p, &q);
 p %= N; q %= N;
 t = id[p]; idq = id[q];
 if (t != idq) { j++; // outer loop only increments when this true
 for (i = 0; i < N; i++){
 idi = id[i]; if (idi == t) id[i] = idq; // 2nd main inner loop body
 }
 }
 }
 for (i=0; i<N; i++) output_id(id[i]); // 3rd inner loop reading & output
 return 0;
}

2.3 Application Development Engineering Requirements

Application development is the critical path to product deployment, so minimizing the
development time is essential. Consequently, application development tools must in-
clude the ability to determine internal states, run one pipe and see the results, as well as
incremental tests, and examination of the configuration of a program. All of these are
required features of the TWF, which provides overall core control. Detailed discussion
of these topics is beyond this paper’s scope. Other application restrictions: Only un-
signed integer data types of 16 and 32 bits are supported. The following are unsup-
ported: Inline functions. Register variables, because registers are unneeded, and register
blocks break TDMA rules.

Continue statements are unsupported, and can be converted to if-statements. Switch
statements are unsupported, and can be rewritten as if-statements. Goto statements are
unsupported, and can be rewritten using returns and encapsulating unstructured code in
a function. These heuristic rules can evolve into canonical (compiler) transformations.

7

2.4 Emulation Engineering Constraints and Requirements

The prototype confirms the hardware objectives, the feasibility of the TDMA con-
strained pipe structure, and tests a set of canonical transformations required for com-
piler application support for C. Its emulation is constrained by the C/C++ compiler
support and interface requirements of the vendor provided tools. The decision not to
use Verilog or VHDL allows initial modeling to be carried with commonly used devel-
opment language environments running without specialized tools on commonly avail-
able computers. The 2017.4 release of the Xilinx development tools for a ZCU-102
demonstration system is used. The implementation source code uses only C language
constructs, while using C++ compilers to build the emulations for three reasons. First
the Xilinx C++ compilers have a significant constraint in implementing inheritance
classes in C++. There can be only one level of virtual member functions, whereas two
levels are required to support these functions for instructed resources (1st level) and
instruction pipes (2nd level). Experience shows C++ compilation provides better type
checking, minimizing problems compiling to the PL fabric. C++ supports const (con-
stant) semantics, enabling multi-level data structure constants. The interface to the core
emulation is through the function named Target_Interface_App (Fig.1), which has com-
piled instantiations in the PL fabric and host computer. Each call of the interface func-
tion represents one clock cycle of the core being emulated. There are inputs and outputs
to the core which enter or leave the 8 pipe stages. To facilitate development, these in-
puts and outputs are organized into a flat time model snapshot of the stimulus and re-
sponse of the PL fabric core on the host side similar to Fig. 4. This flat time perspective
is also the basic programming model of execution of one time slot for one stripe.

3 Detailed Definitions and Terms

The experimental SiMulPro core [9-11] operates in the PL fabric of a Xilinx ZCU-102
SOC demonstration system. The core implementation acts as a TDMA computing de-
vice with 8 Pipes (Figs. 1-3). Fig. 2 shows the core has 16 Stripes (shown horizontally)
in Pipes 1 to 7 (shown vertically), each Stripe with an independent Stripe Controller
(StpCtl) in Pipe 0. Each StpCtl contributes to the EWF propagating from Pipe 0 through
Pipe 4, which stimulates the Automated Pipes 5 through 7 providing feedback and local
data memory access. EwfStatOut of Fig. 1 is a delayed copy of Ewf4 entering Inst Pipe
4 on the previous clock (call of Target_Interface_App).

Fig. 2 shows the instruction processing mechanism implemented by the following in
Inst Pipe 0: a Program Data Memory Controller, a Branch Controller, a Raw Opera-
tional (Op) Unit Controller interacting with the 16 StpCtl. Each StpCtl contains and
interacts with 8 Time Slot Controllers (TsCtl). Fig. 5 shows each StpCtl selects one of
it’s TsCtls to inject a ProcIndex, a tag (short 16 bit), and possibly one or more data
words (32 bits), into the EWF to control its stripe within the Time Slot.

8

Fig. 5. EWF components for each Stripe k and the shared program specifics.

Each StpCtl interacts with its TsCtls to initiate successive EWFs traversing the
stripes in each of the subsequent pipes in a TDMA scheme as a succession of Time
Slots (TSs) governed by the ProcIndex and tag in each stripe component of each EWF.
The tag designates the TS, and up to 6 bit flags for inner loop implementations of func-
tions occurring in one or more stripes. The flags can be set by the TsCtl generating the
EWF component, or by stripe arithmetic resources of Pipes 2 or 3.The ProcInd k is an
8 bit index, with index value 0xff reserved for a noop. Each of the StripeData and
SharedData components are 8 (32 bit) words. The Ftn Info (32 bit word) delineates
several things, only two are required for these experiments: A Call of Ftn 0 (main pro-
gram function) starts a program. A return from Ftn 0, ends it.

Fig. 1 shows the core containing a sequence of pipe stages traversed in a fixed se-
quential mechanism forming two wavefronts. The first is for control and configuration,
the TWF, which enters the PL fabric going first to Pipe 0 and then successively trav-
ersing all the other pipes. The second originates in Pipe 0 initiating a second, data pro-
cessing, Execution Wave Front (EWF). The EWF successively traverses Inst Pipe 1 to
4. When the TWF causes a program to run, the EWF contains all information needed
to execute the program traversing the pipes, with its bit flags encapsulated in the tag.
Before delving into the coding of the main inner loop 2 of the Sedgewick_1_1 program,
the instructed and automated resources of Figs 1-3 are shown in Fig. 6. Stripe k in Inst
Pipe 1 contains instructed resources Pass1 k, ComIn k, Data Fout k, Tag Fout/Merge k,
and Rd Channel (Chan) k. Stripe 0 also contains instructed resources to feedback and
pass shared data, Shared Data Fout 1 0 and Shared Pass 1 0.

Fig. 6. The instructed resources of Inst Pipe 1-4 and automated resources of Auto Pipes 5-7.

9

Fig. 7 shows the tag for a Stripe k containing a Tag Time Slot Number, which is set
in Pipe 0 and fixed in the PIW progression from EWF 1 to EWF Stat Out. The Tag test
part is set by the originating Time slot Controller (TsClt) of its stripe. Individual Tag
tests can be altered by instructed resources in Inst Pipes 1 through 3. For example in
Stripe k, Tag Fout/Merge k 1, in Inst Pipe 1 can modify one or more tag tests. Arithme-
tic 2 k, in Inst Pipe 2 and/or Arithmetic 3 k, in Inst Pipe 3 can also modify tag tests.

Fig. 7. Shows the Time Slot (TS) Tag for Stripe k of Fig. 5, where it is denoted Tag TS k.

4 Main Inner Loop Coding of First Experiment

Many languages such as Fortran, C, and C++ possess iterative (looping) structures. The
C language [3], [21] (sections 1.1 and 1.2) provides a reasonable cross section consist-
ing of three constructs, while-loops, do-while loops and for-loops. A program contains
functions which may use any of these constructs. Any loop contains an iterative code
body. That iterative code body may include a second loop construct inside itself, etc..
An innermost loop construct in a function is defined to be an inner loop of the function.
The starting point for the experiments is 2nd main inner loop of Sedgewick_1_1, with
the loop body shown in red bold italic font. The main inner loop becomes, through this
derivation, one Raw Op Unit (ROU). This paper uses a derivation of the quick-find
program 1.1 in Sedgewick [2]. A random number generator Numerical Recipes 3rd edi-
tion [1] is used to generate random numbers used in the tests. The particular implemen-
tation is from section 7.1.7, the ranlim32 algorithm implemented found on page 357.

Listing 2. The main inner loop of Listing 1 becomes the main ROU.

for (i = 0; i < N; i++){idi = id[i]; if (idi == t) id[i] = idq; }
// inner loop 2 body

Suppose now that we are going to use NumTS ranging from 1 to 128 to represent

the tests to be run for a coding of the main inner loop. Then let TopStripe = NumTS/8.
Then the main inner subloops are as follows:

10

Listing 3. The 2nd main inner subloops for StripeK=0:TopStripe and 0<=TS <NumTS.

For(StripeK,(TS=StripeK:min(7,NumTS-StripeK*8))
 (itmp = TS; i < N; i+=NumTS){
 idi = id[itmp]; if (idi == t) id[itmp] = idq;
}// inner subloop 2 body

Listing 4 shows address calculation of the first statement denoted as the add of i to

the base address of the id vector (denoted idAdr), creating a temporary value idiAdr. A
variable in C, such as i of Listing 1, is required to have a data memory location holding
its contents, which is read from data memory when needed, [3] page 62. Instead of the
variable, temporary values are used in the calculations of each stripe and Time Slot
(TS). Temporary values do not have memory locations where they are read, or where
they are stored when changed. Each stripe and TS simultaneously exercises different,
temporary values of what in Listing 1 is the i variable. In optimizing this inner loop,
the variable i is only written when the loop is done, to comply with C [3]. So i is re-
placed by itmp[k], a temporary version of i in each TS of each active stripe, Stripe K.
The main inner subloop body of Listing 4 shows two memory access operations, the
first reads a component of the id vector, and the second may write to that component.

Listing 4. The main inner subloops version 2 for StripeK=0:TopStripe and 0<=TS <NumTS.

For(Stripe K,TS)(itmp[K] = TS; itmp[K] < N; itmp+=NumTS){
 idiAdr = idAdr+itmp[K]; idi = *idiAdr; // ProcIndex Wave PIW 0
 if (idi == t) *idiAdr = idq; // ProcIndex Wave PIW 1
} // iAdr = &i; *iAdr = N+1; // ProcIndex Wave PIW 2
// inner subloop 2 body

Due to the latency of the core response, and the TDMA use of this to fill each time

slot in each stripe, the first PIW 0 couples seamlessly with PIW 1 to form the succes-
sively initiated PIWs in the same time slot of each stripe being used. Next, allocate the
data portions of the stripe EWF components, the shared EWF data components, the
stripe and shared feedback memory access, as well as, the tag tests are completed before
specifying what the instructed resources of Inst Pipe 0 to Inst Pipe 4 perform. The au-
tomated pipes respond to the instructed resources of Pipe 4. Table 1 shows the alloca-
tions for both PIWs 0, 1, and 2, which completes the main inner loop for the program
in experiment 1. Experiment 2 merges the actions of PIW 0 into part a and PIW1 into
part b of ProcInd 3 (PIW3). PIW 2 is used to terminate the main inner loop in both.

Table 1 shows the following for experiment 1: PIW 0 and 1 perform the main
subloop body, and PIW 2 clears the FIFOs and writes the last value of the index i into
data memory. Table 1 also shows the PIW 0 and 1 merged into PIW 3 for experiment
2, which reuses PIW 2 to clear the First In First Outs (FIFOs) and write the last value
of the index i into data memory. PIW 0 becomes the PIW 3a instruction part. PIW1
becomes the PIW 3b instruction part. These two experiments require an understanding
of two distinct branch-like mechanisms discussed below and shown in Figs. 8 to 11.

Experiment 1 uses the initial VLIW coding of TsCtl’s VLIW instruction of the main
inner subloop. What is described within each Time Slot of each stripe is implemented
as two PIWs, PIW 0 feeds PIW 1, after being processed by Pipes 1-7 (8 clock cycles).

11

When a subloop continues, PIW 1, after 8 clock cycles, feeds the next PIW 0 again, and
so on. After the last cycle of the subloop’s last iteration, PIW 2 writes the last value of
i to data memory to support for-loop C semantics and clear the shared FIFOs, which
need to be cleared for continued support of TDMA operations.

Table 1. EWF, Shared data, & Feedback Allocations for PIW 0,1 & 2 of Experiment 1 and for
PIW 3 and 2 of Experiment 2. NU = Not Used.

 Experiment 1 2
Allocations EWF 1 EWF 2 EWF 3 EWF 4 PIW

012

PIW
3 2
 ab

Stripe k=0:15 data 0 itmp[k] itmp itmp idiAdr=idAdr+itmp
read idiAdr into
Rd[k] 6
idq stored at iAdr

0--

-1-

a--

-b-

Stripe k data 6 NU idi idi idi -1- -b-
Stripe k data 7 NU idiAdr

iAdr
idiAdr
iAdr

idiAdr
iAdr

-1-
--2

-b-
--2

Tag k Test 0 start Used Used Used Used 0-- a--
Tag k Test 1 last Used Used Used Used -1- -b-
Tag k Test 4 end of loop Used Used Used Used -1- -b-
Tag k Test 5 NU NU NU idi == t -1- -b-
Stripe k Rd Chan 0

pop inject

idi (EWF 2)

Always Requested
Always Used

0--
 -1-

a--
-b-

Stripe k Wr Chan 0
pop

Request by Tag test 5

-1-
 0--
--2

-b-
a--
--2

Stripe k Feedback 0 idiAdr
pop inject

idiAdr

idiAdr
idiAdr

idiAdr fed back 0 0--
-1-

a--
-b-

Shared data 0 NU idAdr
iAdr

idAdr
iAdr

idAdr
iAdr

0--
--2

a--
--2

… data 6 NU idq
itmp[0]

idq
itmp[0]

idq
write itmp[0] at iAdr

-1-
--2

-b-
--2

… data 7 NU t t t -1- -b-
… Feedback 0 idAdr peek inject

pop
 0--

--2
a--
--2

… … 6 idq peek inject
pop

 -1-
--2

-b-
--2

… … 7 t peek inject
pop

 -1-
--2

-b-
--2

Fig. 8. Shows the VLIW instruction for a Time slot Controller (TsCtl) of a Stripe Controller
(StpCtl) k for the ProcInd indexed, local VLIW instruction memory of StpCtl[k] which is dis-
tributed to the TsCtl needing it, saving the TsCtl’s from each having a local VLIW memory.

The Time slot Controller VLIW format designates an If Test, which may indicate an
active Tag Test, controlling which of the two Next ProcInd values follow the current

12

ProcInd. When the Then Next and Else Next ProcInd fields are the same, then the next
process index occurs irrespective of any specified If Test. Fig. 9 and Table 2 show what
is required for the three process indexes needed for Stripe 0 and the two for Stripes 1
to 0xf. In Fig. 9, the top row of boxes represents successive PIW 0’s with incremental
values of itmp. The bottom row of boxes represents successive PIW 1’s, which receive
results of the PIW 0 delivered through each stripe’s automated resources. In the bottom
right hand box PIW 2, clears the shared feedback resources of Stripe 0 and stores the
final temporary value of itmp at the address of the i variable in data memory.

Fig. 9. The active TsCtl outputs for Stripe Controllers k=0 to k=0xf in Pipe 0, output the ProcInd
values for 8 PIWs which propagate through Pipes 1-7. This is 4 iterations of the main inner
subloop for Stripe k==0 and for any of the other active Stripes k != 0.

The actions performed in Stripe 0 differ from those of the other stripes in the last
iteration’s last process index generated. The reason for this is that during the execution
of this ROU, the shared feedback is used to generate the t, idAdr, and idq temporary
values. These are loaded before the start of the main inner loop, so that there is no
chance of an access collision while running the main inner loop in the data memory
array. At the end of the main loop, the semantic rules of C require the inner loop index
(i) be stored in data memory, shown in listings 1-3. To maintain the TDMA condition,
all shared temporary values fed back must be cleared from their destination FIFOs.
Only Stripe 0 should do this to avoid potential, data memory access collisions.

Table 2. Experiment 1 VLIW instruction summary of ProcInd branching in each active TsCtl

ProcInd (PIW) ProcInd If Test Then Next ProcInd Else Next ProcInd
0 0 (don’t care) 1 1
1 Tag Test 4

is end of loop
0 2 (k == 0)

Null ProcInd (k != 0) (done)

2 (Stripe k==0) Null Test Null ProcInd Null ProcInd (done)

13

Referring to Fig. 9 and Table 2, each active Time slot Controller (TsCtl) begins with
ProcInd = 0. Whether if test 0 is true or not, the Then Next and Else Next agree as
ProcInd (1). The next ProcInd is 1 on the next PIW in each time slot in every active
stripe.

The Tag if test for ProcInd 1 is TagTest 4 for all TsCtl in all active stripes.
In Stripe k == 0 for ProcInd 1, the then next ProcInd is 0, and the else next ProcInd

is 2. If TagTest 1 is true, the next ProcInd 0 else next ProcInd is 2.
In Stripe k = 1 to 0xf (15) for ProcInd 1, then next ProcInd is 0, and the else next

ProcInd is Null ProcInd. If Tag test 1 is true, the next ProcInd 0 else Null ProcInd (the
TsClt is done).

In Stripe k == 0 for ProcInd 2, then next ProcInd is Null, and else next ProcInd is
Null. Irrespective of If Test, the next ProcInd is null and the TsCtl is done.

Experiment 2 confirms a VLIW instruction requirement for data processing in-
structed resources leads to a 2X performance improvement in each test run. Each local
VLIW instruction of the instructed resources of Pipes 1 to 4 must comply with the for-
mat shown in Fig. 10.

Fig. 10. Each local VLIW instruction has 2 tag enable components controlling separate parts.

Table 3. Description of the effect of each Tag Enable field on its instruction part.

Tag Enable 0 Part 0 Tag Enable 1 Part 1
En/
Disable

Test
ID

Test
Value

 En/
Disable

Test
ID

Test
Value

1 0-5 0 NU 1 7 X NU
1 0-5 1 Used 0 7 X NU
0 0-5 0 Used 0 6 X NU
0 0-5 1 NU 1 6 X Used

Tag Enable fields act independently from each other to control use or non-use (NU)

of their respective parts of the VLIW instruction of Fig. 10. For example, Tag Enable
0 uses one of the 6 tag tests shown in Fig. 7 in conjunction with its Enable/Disable field
to use, or not use (NU), part 0. When Tag Enable 1 designates test ID 7, which always
makes part 1 Not Used. When Tag Enable 1 designates test ID 6, it can always use
(Enable =1), or always Not Use (En/Disable =0) Part 1. Each kind of instructed resource
may have distinct instruction part components from any other instructed resource of a
stripe. For example, Tag Fout/Merge may differ from the other instructed resources of
the stripe. Alternatively, Pass 2,k and Pass 3,k may have the same format in some situ-
ations, possibly with both parts essentially the same. Also, Arithmetic 2,k and 3,k may
have their instruction parts separately tuned, so Part 0 favors local address calculations,

14

and Part 1 does more extensive arithmetic. Fig. 11 shows a straight forward way, with
minimal overhead, to multiplex the performance of the PIWs of Fig. 9.

Fig. 11. Shows the performance improvement using the local instruction formats of Fig. 10.

Recall PIW 0 and PIW 1 shown in listing 4. For consecutive iterations, PIW 0 of the
first and PIW 0 of the 2nd iteration do not interact, because the memory locations are
distinct addresses located in separate data memory cells in the data memory array. A
single PIW can integrate the operations of PIW 0 and PIW 1. This requires that the
TsCtl’s of each stripe initiate Tag Test 0 and 1 as shown here, when executing the ROU
of the main inner loop to do the following: On the first iteration, only assert Tag Test
0. On the last iteration, only assert Tag Test 1. In between, assert both Tag Test 0 and
1. How this is implemented is discussed in the next section.

Table 4. Experiment 2 VLIW instruction summary of ProcInd branching

ProcInd ProcInd If Test Then next ProcInd Else next ProcInd
3 (Stripe k=1 to 15)
 (Stripe k = 0)

4
4

3
3

Null ProcInd
2 (Stripe k==0)

2 (Stripe k == 0) NU Null ProcInd Null ProcInd

5 Instructed Resource Coding for Experiments 1 and 2

Each of the active Stripes k uses the same Shared data, namely the address of the id
vector in PIW 0, as well as idq and t in PIW 1. The id[] vector is located in global data
memory, but it is often dynamically allocated. Each active time slot calculates idiAdr
from itmp, its version of loop index i. An add of idAdr and itmp is performed in Arith-
metic 3 k from Table 5, Pipe 3. Assume that Stripe 0 generates and directs the shared
program data. While these subloops are running, it is best to avoid any other accesses
of the data memory array, to fetch the values of idAdr, idq or t, because these can collide
with access of the id[] contents. These are fetched once before the start of the main
inner loop and placed into shared feedback for use during the loop. Each feedback tar-
gets one of eight First In First Out (FIFOs) for Stripe k=0 to 0xf(15), or the shared FIFO

15

block of 8 FIFOS of Stripe 0. Peeking a FIFO returns its 1st active content, without
altering the first position. Popping a FIFO returns the 1st active content, but the FIFO’s
2nd active content becomes its new 1st content. If that content is injected, then it enters
the pipe’s outgoing EWF data for it’s stripe. If not injected, the content is thrown away.

Table 5. Inst Pipe coding for PIW 0 for Stripe k=0 to 15 in Experiment 1 becomes the instruc-
tion part0 (p0) coding for PIW 3 of Experiment 2.

Pipe Active Stripe [k] Actions Temp value
0 Stripe [k] TsCtl[TS] calculates itmp[k] into Ewf1 Stripe[k] Data[0]

 Generates Ewf1 Stripe[k] ProcInd = 0 (ProcInd = 3 in Experiment 2)
itmp

1 Stripe [k] Pass 1 k passes EWF 1 Stripe[k]Data[0] to EWF 2 Stripe[k]Data[0]
Stripe[0] Shared peek Fout 0 injects idAdr into EWF 2 shared Data[0]

itmp
idAdr

2 Stripe [k] Pass 2 k passes EWF 2 Stripe[k]Data[0] to EWF 3 Stripe[k]Data[0]
Stripe[0] Shared Pass 2 0 passes EWF 2 to EWF 3 for shared Data[0]

itmp
idAdr

3 Stripe [k] Arithmetic 3 k Adds itmp (Data 0) to idAdr (Shared Data0)
 to create idiAdr as EWF 4 (Data 0)

idiAdr[k]

4 Stripe[k] Rd Req port 0
 receives idiAdr from Stripe[k] Ewf 4 Data[0] fetching *idiAdr as idi[k]
 as Rd Chan[k] port 0 on next PIW

idiAdr[k]
idi[k]

Table 6. Inst Pipe coding for PIW 1 for Stripe k=0 to 15 in Experiment 1 becomes the instruc-
tion part 1 (p1) coding for PIW 3 in Experiment 2.

Pipe Active Stripe [k] Actions Temp Value
0 Stripe [k] TsCtl[TS] Generates Stripe [k] Ewf 1 ProcInd 1
1 Stripe [k] Rd Chan FIFO 0 pops idi[k] & injects into EWF 2 Stripe[k]Data[6]

Stripe[0] Shared Fout 0 peeks idADr, t, idq from FIFO 0, 6,7
 into EWF 2 Shared Data[0,6,7]

idi[k]
idAdr, t, idq

2 Stripe [k] Pass 2 k passes EWF 2 Stripe[k]Data[6] to EWF 3 Stripe[k]Data[6]
Stripe[0] Shared Pass 2 0 passes EWF 2 to EWF 3 shared Data[0,6,7]

idi[k]
t, idAdr

3 Stripe [k] Arithmetic 3 k compares for == EWF 3 Stripe[k]Data[6]
 With EWF 3 Data[6] to form EWF 4 Tag Test[0] = (idi[k] == t)
Stripe[0] Shared Pass 3 0 passes EWF 3 shared Data[7] to EWF 5 shared Data[7]

idiAdr[k]
TgTest 0
idq

4 If (Tag Test0)
Stripe[k] gens Wr Req idiAdr[k] from Stripe[k] Ewf 4 Shared Data[6] of Shared
Data[7] (idq) sent to Wr Stripe[k] port 7

idiAdr[k]
id[itmp]

Table 7. Inst Pipe coding for PIW 2 for Stripe k=0 used in both experiments.

Pipe Active Stripe [0] Actions Temp Value
0 Stripe [0] TsCtl[TS] Generates Stripe [k] Ewf 1 ProcInd 1
1 Stripe[0] Shared Fout 0 pops from FIFO 0, 6,7 not injected

Stripe[0] Pass 1 0 injects iAdr, iLast into EWF 1 Shared Data [6,7]

iAdr, iLast

2 Stripe[0] Shared Pass 2 0 passes EWF 2 to EWF 3 shared Data[6,7] iAdr, iLast
3 Stripe[0] Shared Pass 2 0 passes EWF 2 to EWF 3 shared Data[6,7] i iAdr, iLast
4 Stripe[0] gens Wr Req idiAdr from Ewf 4 Shared Data[6] of Shared Data[7] iLast

sent to Wr Stripe[k] port 7
*iAdr = iLast

PIW 2 is used to clear the shared FIFOs used by the two PIW’s of Table 2 and 3 for

Experiment 1 and the PIW 3 of Experiment 2. The last value of the C variable i is
updated by writing its last value to data memory. Note that by planning the allocations
appropriately, there is significant code reuse, and a near 2X speedup in performing the
main inner loop for any specific number of time slots employed.

16

Table 8. Inst Pipe coding for PIW 3.

Pipe/
Test

Active Stripe [k] Actions Temp
Value

0 Stripe [k] TsCtl[TS] calculates itmp[k] into Ewf1 Stripe[k] Data[0]
See ProcInd discussion in Table 7
Calculates Test2, Test3, Test4

Itmp
Tag Tests 2,3,4

1 Tst2 See p0 pipe 1 in Table 2 itmp, idAdr
Tst3 See p1 pipe 1 in Table 3 idi[k], idAdr, t, idq

2 Tst2 See p0 pipe 2 in Table 2 itmp, idAdr
Tst3 See p1 pipe 2 in Table 3 idi[k], t, idAdr

3 Tst2 See p0 pipe 3 in Table 2 idiAdr[k]
Tst3 See p1 pipe 3 in Table 3 idiAdr[k], TgTest 0. idq

4 Tst2 See p0 pipe 4 in Table 2 idiAdr[k], idi[k]
Tst3 See p1 pipe 4 in Table 3 idiAdr[k], id[itmp]

6 Experimental Test Conditions and Results

Sedgewick [2] does not specify a random number generator, which leads to the selec-
tion of one from Numerical Recipes [1]. The random number generator was made into
a C function Qrand. Qrand was tested running on both Windows 11, Mac OS 10, and
the host computer of the Xilinx SOC, the outputs generated from the same seed values
were identical for the length of runs in the experiments. In Sedgewick_1_1, N stands
for the size of a vector labeled id in Listing 1. Since speedups of a factor of up to 256
were being tested, rather than report results for N = 100, 1000, and 10000, the following
values are reported, N=1,000, N=4,000, and N=10,000. To confirm correctness of the
calculations, a memory snapshot of the id array was performed after L iterations of the
inner loop, where L= 3/4 N, = 750, 3000 and 7,500 for N=1000, 4000, and 10000. The
main loop is O(L*N= ¾ N2)=O(N2) (See [2] part 1, pg 40 Defn 2.1).

Fig. 12. Six experimental runs are summarized. the N = 1000 runs are labeled 1000 Exp 1 and
1000 Exp 2. The Exp 1 indicates Experiment 1. The Exp 2 indicates Experiment 2.

17

The program begins in a configured state having loaded the Sedgewick_1_1 inter-
face and PL fabric implementation. The implementation addresses operation from one
stripe with one TsCtl of Fig. 2, incrementally filling the stripe with 8 TsCtls, and con-
tinuing in this fashion until the 16 stripes are filled with 128 TsCtls.

7 Conclusion

The tested function has simple inner loop bodies, making it possible to detail how that
function’s inner loops can be optimized for a speedup of between 95X and about 120X
in Experiment 1, depending upon N. The bigger N, the closer to 128X. Experiment 2
reduces iterations of the inner loop body from two PIWs in each time slot to essentially
one using the VLIW format of Fig. 10, improving the speedup for the test program from
1X to nearly 253X (getting closer to 256X, the larger N becomes).

These performance results are achieved without the need of caches, superscalar in-
terpreters and multi-thread controllers, providing maximum performance with minimal
power consumption, [9], [10], [11]. These cores can be extended for all O(Np>=2) func-
tions found in Numerical Recipes [1] & [17] and the graph related functions of Sedge-
wick [2], which have HPC benchmarks [18] & [19]. Most big data programs can also
be efficiently converted to run on systems built with the SiMulPro cores, because the
semantic constructs of C are found in most, if not all, HPC languages used to implement
these programs. These experiments provide evidence that the SiMulPro core is a prac-
tical and efficient alternative to von Neumann computers.

By construction, SiMulPro Cores are immune to infection by viruses and rootkits
from data memory devices, data memory access and data operations [9]. Further secu-
rity protection results from removal of the function return stack from data memory and
removal of function pointers as discussed above.

References

1. Press, W, Teukolsky, S., Vetterling, W., and Flannery, B.: Numerical Recipes: The Art of
Scientific Computing. 3rd edn. Cambridge University Press, Cambridge, UK, (2007).

2. Sedgewick, R.: Algorithms in C, Parts 1-5. 3rd edn., Addison-Wesley Publishing Company,
Boston, Mass., (1998).

3. Kernighan, B., Ritchie, D.: The C Programming Language. 2nd edn., Prentice Hall, PTR.,
Upper Saddle River, New Jersey, USA, (1988).

4. Cooper, K., Torcson, L.: Engineering a Compiler. 2nd edn. Morgan Kauffman, Burlington,
Mass, USA, (2012).

5. Waite, W., Goos, G.: Compiler Construction. Springer Verlag, New York. (1984).
6. Wolfe, M.: High Performance Compilers for Parallel Computing. Addison-Wesley Publish-

ing Company, Redwood City, CA, USA. (1996).
7. Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel. Addison-Wesley, Upper

Saddle River, New Jersey, USA. 6th printing (2008).
8. Shen, J., Lipoasti, M.: Modern Processor Design: Fundamentals of Superscalar Processors.

Waveland Press, Inc., Long Grove, IL. (2013).

18

9. Jennings, E.: Securing Data Centers, Handheld Computers, and Networked Sensors against
Viruses and Rootkits. In: Editor, F., Editor, S. (eds.) 2017 IEEE International Conference
on Rebooting Computing (ICRC), DOI: 10.1109/ICRC41351.2017, pp. 1-8. IEEE (2017).

10. Jennings, E.: Core Module Optimizing PDE Sparse Matrix Models with HPCG Example,
published with open access at SuperFri.org, DOI: 10.14529/jsfi170205, Supercomputing
Frontiers and Innovations, https://superfri.susu.ru/index.php/superfri/article/view/136/231,
last accessed 2021/11/26, (2017).

11. Jennings, E.: The Simultaneous Transmit And Receive (STAR) Message Protocol, pub-
lished with open access at SuperFri.org, DOI: 10.14529/jsfi170204, Supercomputing Fron-
tiers and Innovations, https://superfri.org/index.php/superfri/article/view/135, (2017).

12. van Leeuwen, J., Tarjan, R.: Worst-case analysis of set-union algorithms, Journal of the
ACM, Vol. 31, No. 2, 245-281, (1984).

13. Hopcroft, J., Ullman, J.: Set-merging Algorithms, SIAM J. Comput. 2(4), 294-303, (1973).
14. Grami, A.: Introduction to Digital Communications, 2016 cited by Time Division Multiple

Access - an overview | ScienceDirectTopics, https://www.sciencedirect.com/topics/engi-
neering /time-division-multiple, last accessed 2021/11/15.

15. Sterling, T.: “Declaration of Interdependence through Non von Neumann Architecture”,
2020/7/22,https://www.hpcwire.com/2020/07/22/a-declaration-of-interdependence-through
-non-von-neumann-architecture/, last accessed 2021/11/15.

16. Patterson, D., Hennessy, J.: Computer Organization and Design: The Hardware/Software
Interface (RISC-V ed), Morgan Kauffmann, an imprint of Elsevier, Cambridge, MA. (2018).

17. Press, W, Teukolsky, S., Vetterling, W., and Flannery, B.: Numerical Recipes in C: The Art
of Scientific Computing. 2nd edn. Cambridge University Press, Cambridge, UK, (2002),
downloaded version last accessed in 2017.

18. Graph 500 Steering Committee, Graph 500 Benchmark Specification, https://graph500.org
/?page_id=12, last accessed 2021/11/26, (2017).

19. Heroux, M., Dongarra, J., and Luszczek, P., HPCG Benchmark Technical Specification.
United States: N. p., 2013. Web. doi:10.2172/1113870. https://www.osti.gov/bib-
lio/1113870-hpcg-benchmark-technical-specification, last accessed 2021/11/26, (2013).

20. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J., MPI-The Complete
Reference, Vol. 1. The MPI Core, 2nd edn, MIT Press, Cambridge Massachusetts, (1998).

