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Abstract—DRAM operation is a major cost for HPC and big data 
programs. Also, DRAM has hard error reliability problems. This 
paper proposes how to minimize DRAM energy consumption and 
increase reliability. Performance is also maximized, and the needs of 
exascale systems, which require local system state capture and 
rollback, are met. Three aspects of DRAM application specific 
memory management are discussed. First, each node requires a 
specific amount of DRAM. A node is the minimum hardware 
component needed to execute the application. Second, entire system 
applications often require many nodes using DRAM, for example as 
parallel processors. Third, in sparse matrix simulations of partial 
differential equations, the implementation is organized to make the 
mathematics transparent, not to optimize system performance. The 
benchmark HPCG is used to show this. A multi-tiered approach to 
managing and operating DRAMs is proposed. First, logical to 
physical memory address conversion can minimize error impact, 
and determine an application’s DRAM allocation. Second, this 
allocation leads to only powering the needed DRAM chips, rather 
than all of them. The logical addressing of the operating system can 
remain stable, while the physical placement changes over time. This 
minimizes the wear on the DRAM chips. Third, extending the logical 
addressing to encompass large data spaces is discussed. Fourth, the 
addressing scheme is extended to support distributed data objects in 
terms of their defined relationships. Again, this is illustrated in terms 
of HPCG.   

Keywords— DRAM; memory management; codesign; HPC; big 
data; exascale; HPCG; GRAPH 500 

I.  INTRODUCTION 
DRAM is the only available storage technology able to handle 

the main memory requirements of numerical, or data, intensive 
computations. DRAM can be reliably manufactured in chips 
storing billions of bits, and be reliably written trillions of times. 
The nearest potential alternatives either cannot be reliably 
manufactured to hold comparable amounts of data, or cannot be 
reliably written more than a few tens of thousands of times. 
However, the energy cost of operating the DRAM is a major 
component of the cost of program execution [2]. DRAM also faces 
hard error problems [1]. Damaged DRAM components must be 
replaced, contributing a significant maintenance expense. Today, 
DRAMs are controlled by memory controllers very similar in 
structure to those introduced in the 1970’s. These controllers keep 
all DRAMs always turned on, irrespective of how much memory 
is required by an application (app). By the 1990’s, the DRAM 
controllers were slaved to a cache, which is interfaced to one or 
more microprocessors. These caches request a page of 64, or more 

bytes, from the DRAM. This leads to access problems for sparse 
matrix solvers, where only a small part of the requested page 
contents are actually used.  HPCG [3] is a computer benchmark 
which highlights this problem. While there are many studies of 
DRAM problems and potential solutions [6] to [17], this article 
focuses on “Cosmic rays don’t strike twice: understanding the 
nature of DRAM errors and the implications for system design” 
[1]. It is a statistically relevant survey, and provides a clear set of 
observations from which this approach can be derived and 
understood. 

This paper proposes a co-design approach to managing DRAM 
operations. Hardware and software work together to reduce 
DRAM reliability and communication problems, as well as 
memory access overhead. This approach uniquely configures 
DRAM for each application, at each application node, 
dramatically reducing DRAM usage and energy consumption. 
This approach is applicable across most, if not all, hardware 
approaches requiring DRAMS. 

 The proposed circuitry is applied in this paper to two example 
apps, both using the same nodes, with dramatically different 
DRAM requirements. The first app performs data mining, which 
requires 256 Hadoop nodes, each using 64 Gbytes of DRAM, for 
a total amount of DRAM of 16 Terra bytes.  

 The second app implements a sparse matrix solver of a system 
of Partial Differential Equations (PDEs) similar to the HPCG 
benchmark [3]. This app uses a total of 157 Gbytes over all the 
nodes. However, it triggers frequent cache misses, which cripple 
performance. This app uses the finite difference scheme of HPCG 
on a 280 by 320 by 540 grid with 48,384,000 grid points. This 
simulation is represented by a sparse system of linear equations, 
with a typical stencil of 27 grid points away from the grid 
boundary, shown in Fig. 1. The stencil operator is shown in a three 
dimensional (3-D) coordinate system. The stencil operator 
operates upon the nearest neighbors of the point at ‘0’, which is 
the point in this grid being approximated. 

 The linear system is modeled by a sparse matrix , a stimulus 
vector  and a resulting vector , where the solution satisfies 

. Suppose that an implementation uses three forms of the 
stimulus vector and three forms of the response vector. Together 
with the sparse matrix , there are seven global objects, which 
are distributed across the nodes to implement the simulation. 
Assume that each grid point includes a number (double precision 
floating point) and indexing of 4 bytes to indicate the column index 
of the grid point. It is common to organize the  matrix into row-
compressed notation, so that all the elements of a given row are 
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stored in consecutive locations. Each entry of the matrix  
contains about 12 bytes for each grid point coefficient and its 
column index. Given this entry size, the matrix contains about 
12*27*48,384,000 bytes, which is about 157 Gbytes. Again 
assume that 256 nodes are being used, each node need only contain 
about 1 Gbyte.   

 
Fig. 1. An example 27 point stencil operator as used in HPCG. 

  

 HPCG is a typically sized grid of 280 by 320 by 540 nodes [3]. 
However, the sparse linear system of equations frequently codifies 
these models as shown in Fig. 2. The index location (x,y,z) = 
(z*N2+y)*N1+x is used to encode the indexing of the stencil into 
the sparse matrix and vectors of the model of HPCG. Here, N1 is 
280 and N2 is 320 so that N1*N2 = 280*320 = 89,600 double 
precision numbers. The Euclidean distance between L0 and L1 = 
1, whereas the difference between index locations L0 and L1 is 
N1*N2. This figure shows that the nodes of this grid are 
enumerated first in one direction, for instance, along the i-axis, 
then along the j-axis, and then along k-axis. This scatters the 
geometric locations across a wide section of the stimulus vector 
components.  

 
Fig. 2. Enumeration of grid points of Fig. 1, for L0 to L3. 

 

 Consider the two neighboring points L0 and L1 of Fig. 2. The 
Euclidean distance between L0 and L1 is 1, but distance between 

their index locations in the corresponding stimulus vector 
components, is 280*320 = 89,600 double precision numbers, or 
716,800 bytes apart from each other. Note that two points 
separated by one in the j direction are 2,240 bytes apart. If two 
points are separated by two numbers in the j direction, this is 
enough to trigger a cache fault when the cache page size is 4096 
bytes. Caching structures force a block of memory, often at least 
4K bytes in size to be fetched for the each of the 8 byte floating 
point numbers required to calculate based upon one of these 
stencils. To access the z-0, 1 and 2 planes for one 27 point stencil 
often entails at least four data transfers to read 9 of the 27 double 
precision FP numbers for a new value of z. This is a 
communication cost of 4*4096 bytes to access 216 bytes, which is 
more than 97% wasted.  

 The first app seems to be a more demanding task, because of 
its much larger demand of DRAM memory. However, the 
Hadoop-compliant nodes of the first app are almost exclusively 
processing just the data at their node. The caching of the Hadoop 
node’s local DRAM is unlikely to have cache faults outside the 
node’s DRAM. The second, HPCG app forces cache misses and 
fetches from outside the node almost all the time.  

Today, the DRAM is controlled by memory controllers, which 
are not configured to optimize the app running on the node. A node 
is the basic execution unit of an app’s programs and 
configurations, each applied to internal resource(s) in one or more 
of the node(s). For example, a program may instruct a 
microprocessor directing multiple SIMD arrays of VLIW cores, 
such as the Sunway computer employs [19]. A program may 
instruct the operations of a Graphical Processing Unit (GPU). A 
configuration may direct one or more FPGA(s) to operate as an 
accelerator for numeric and/or data intensive computations. 
Within this context, the DRAM is operated for use by a node’s 
internal resources as in Fig. 3. 

This paper introduces an app configurable DRAM controller, 
which can optimize the app’s execution on the node, and with 
other app nodes, throughout the system. The app configurable 
DRAM controller interfaces with a collection of DRAM chips, 
called a DRAM chip array. The DRAM chips are organized into 
chip units, which can be allocated to operate, or be held in reserve. 
The operational chip units are powered during the app’s execution. 
The reserve chip units are not normally powered during the app’s 
execution. This application configuration of the node insures that 
only the chip units required by the program are consuming energy. 
Each app node can have internal resources, as well as an app 
configurable DRAM controller interfaced to a DRAM chip array 
organized into chip units of one or more DRAM chips. Each 
DRAM chip includes multiple pages organized around one or 
more rows of the DRAM. The pages, which are what is actually 
accessed, traverse multiple columns. 

 

 

A
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Fig. 3. A system with one or more application (app) nodes, communicating via one or more network(s).  

 

II. LOGICAL TO PHYSICAL ADDRESSING 
 There are two persistent, but relatively small, data 
requirements in these nodes, which may vary from one app to 
another. First, the operating system kernel will have a memory 
component. Second, nodes need to support local, resilient, 
response to exascale system failures, which will be discussed at 
the end of this section. 

 DRAM failure maps [1] indicate that specific areas receive a 
disproportionate amount of failures. There is a powerful, though 
implicit, consequence to these observations. A local to physical 
address map can be constructed, which averages out access usage 
of the physical pages of the DRAM. The logical to physical 
address map is also used to retire pages before they fail. The app 
logical to physical address translator uses the logical to physical 
address map. The logical to physical address translator is the first 
major component of the app configurable DRAM controller of Fig. 
3.  

 The access processor receives requests for DRAM access, and 
uses the logical to physical address translator to direct the physical 

access controller to perform the accesses, when they are local. An 
access monitor continuously senses these local DRAM accesses to 
update the chip unit status tables in Fig. 4.  
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Fig. 4. Runtime operation of the access monitor. 

 

 The chip unit status tables are used by the access processor to 
reconfigure the logical to physical translation, and to optimize 
energy use for the app, as shown in Fig. 5. 

 
Fig. 5. App configurable DRAM controller directing a 

DRAM power control circuit to individually power each 
chip unit. 

 

 Given the variance in application DRAM requirements, energy 
conservation issues, app access requirements, and support for 
exascale class state resilience, we can formulate what needs to be 
logged at the app DRAM memory controller. This logged 
information guides an app specific mapping of logical to physical 
addresses at each node, and across all the nodes of the application 
system. The access monitor counts read and write accesses, as well 
as errors that can be corrected. The logs allow access balancing for 

frequently used memory regions when the logical to physical 
address map is generated. However, there is a third element to this 
situation, the application’s usage of the DRAM.  

 Consider initializing DRAM access for the application 
throughout its application nodes in the system. Each app node 
knows its node address in a node total address space, its local 
DRAM requirement in terms of the total DRAM requirement of 
the application throughout the system, as well as a map of the local 
operating system kernel in the active DRAM of the node. Given 
this initialization information, several preliminary calculations 
used in building the logical to physical map for the application can 
be carried out with the above information, at each node 
simultaneously. The total DRAM requirement is used to create the 
application logical address space in terms of a starting block 
address, probably 0 up to a top block address offset in terms of the 
total DRAM requirement.  

 The app DRAM controller operates the active chip units. Fig. 
5 shows some details of Fig. 3, in which the DRAM chip array is 
powered by a DRAM power control circuit directed by the 
physical access controller of the app DRAM controller. The 
DRAM power control may be included in the app DRAM 
controller, or it may be separately packaged. Reserve DRAM chip 
units are not powered up during the execution of the app. The 
operational chip units are powered during the execution of the 
application program. This app configuration of the DRAM 
controller insures that only the chip units required by the program 
are consuming energy, which minimizes DRAM energy use.  

 Returning to Fig. 3, the app access processor receives access 
requests, and operates the other elements of the app DRAM 
controller to respond to the access request. Here are some 
examples of these activities as two read requests: The app access 
processor receives a first read request for DRAM at a given logical 
address. The logical address may indicate the corresponding 
physical address is located within the app node’s DRAM array. In 
this situation, the app access processor queries the logical to 
physical address translator to determine one, or more, physical 
addresses required by the read request. The physical address(s), 
plus possibly an access length, are provided to the physical access 
controller, which is instructed by the app access processor to read 
the appropriate physical page(s) of the DRAM array to perform 
the requested read operation. The contents of the DRAM are sent 
to the app node as the appropriate response, when the read 
operation has either been without error, or has been corrected 
appropriately. 

 The app access processor receives a second read request at a 
second logical address, which corresponds to a physical address 
outside the DRAM array of this app node. The app access 
processor responds by sending an access request message across 
one, or more, app networks to another app node, to fetch the 
requested DRAM memory contents.  

 Consider how to minimize the overhead associated with the 
HPCG benchmark, and sparse matrix manipulation, and other 
apps, such as graph related apps as demonstrated by the Graph 500 
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benchmark [18]. The intent of the app programmer is to access the 
large data objects at will, by referencing where in the large object 
the access is to occur. They need the referenced data, but nothing 
more than that. This is where the logical object translator of Fig. 1 
enters into the picture. The logical object translator receives a 
logical object identifier and an internal index list, which is 
processed to create a local indicator and a non-local indicator. The 
local indicator is true when at least part of the object access request 
can be processed locally. The non-local indicator is true when at 
least part of the object access request must be processed away from 
the app node. The response to these requests is the transfer and 
access of just the information required for the transfer. This 
approach, by using the appropriate networks, entails some 
overhead, but does not trigger the access and transfer of thousands 
of unneeded bytes, as a caching system requires.  

 Now consider some of the details of Fig. 4. The physical access 
controller performs DRAM accesses, by communicating to a 
DRAM array interface, which directly accesses one or more of the 
active Chip Units in the DRAM Chip Array. The following are 
communicated: Read (Rd) and Write (Wr) signaling, combined 
with a Chip address (Adr), Page address (Adr). Write operations 
assert the Wr data from the physical access controller to control 
the DRAM array interface to write into the DRAM Chip Array. 
Read operations find the DRAM array interface asserting the Rd 
Data in response to its read access of the DRAM chip array. 

 The access monitor intercepts these signals and an Access 
count, an Error Correction Code (ECC) status report, and an Error 
count (cnt) to create an update of one or more of the Chip unit 
status tables 0 to ChipUnitMax, which is 17 in the current example. 
Note that the ECC coding associated with the Wr data for write 
operations may be generated in the physical access controller or 
the DRAM array interface. The ECC coding associated with the 
Rd data for read operations is generated by the DRAM array 
interface in response to the DRAM chip array being read. The 
DRAM array interface analyzes the Rd data and Rd ECC (not 
shown) from the DRAM chip array to determine if the read is 
without errors, or if the errors are detected but correctable, or if the 
errors are detectable and uncorrectable. These various conditions 
make up the ECC access status report, as well as the access count 
for the access operation to the access monitor. 

 The access monitor organizes the inputs shown in Fig. 4, and 
updates one or more of the chip unit status tables.  These chip unit 
status tables are retained to monitor the wear on the DRAM chip 
array. The tables may have an essentially non-volatile memory, 
and/or may be transferred elsewhere for archiving. Note that in 
some situations, these tables may be merged and potentially 
organized in a different fashion, but provide comparable, 
equivalent or more detailed information about the wear of the 
DRAM components, possibly in support of one or more page 
retirement policies [1]. These page retirement policies are shown 
to remove 90% or more of the page failures. The domain of each 
design and its system requirements, determines the structure and 
behavior of the DRAM chips being used, and leads to decisions 
about which specific policy is to be implemented.  

While the DRAMs may support some form of multi-block 
operations or structure in each of their chips, this discussion 
focuses on the simplest model of their behavior that is likely to 
apply. So while a chip status table may, or may not, exhibit 
determinations of a block structure, the following is more certain 
to be useful: Each chip unit table includes an array of 
PageUsageSummary, possibly indexed to traverse the pages of the 
chip unit. Each PageUsageSummary includes the following 
indicators of usage of the page being referenced: 

• NumberOfWrites approximates how many writes have 
been performed on the page, 

• NumberOfReads approximates how many reads have 
been performed on the page, 

• a PageStatus, may indicate some combination of 
UseOrUnused, possibly in conjunction with 
CanOrCannotBeUsed, 

• a NumberOfCorrectableErrors, 
• a CorrectableErrorAddressList, and 
• a Time2FailureEstimate. 
 
 

 

TotalActivePages = 0 
Do 
   (NewChipUnitID, NewActivePages) = CalculateMaxAndRemove(  
      TotalAcceptableActivePagesList) 
    AddActivePhysicalPagesToLogic2PhysicalAddr_Table( NewChipUnitID,  
      NewActivePages) 
    Assert Used(NewChipUnitID) in UnitPageSummary of every acceptable page 
        In the NewChipUnitID 
    TotalActivePages = TotalActivePages + NewActivePages 
While TotalActivePages < TotalLogicalActivePageCount 

Above is Listing One, showing an example of an allocation 
procedure for chip units. This example minimizes energy 

consumption by allocating the most usable chip units first. This 
also insures a high Mean Time Between Failure (MTBF), by 



Application Configurable DRAM Memory Management for HPC and Big Data 

  6 | P a g e  
 

allocating chip units with the highest number as new active pages. 
Each of these pages has an acceptably large estimate for the time 
to DRAM page hard failures. 

 The app access processor may initialize the app logical to 
physical address translator by first initializing the local logical 
address table with TotalLogicalActivePageCount, which is the 
logical address field range of the app node multiplied by the ideal 
number of pages for the logical chip unit. Either the app access 
processor or the access monitor may operate upon the chip unit 
status table to update the Time2FailureEstimate of each page of 
each chip unit in the DRAM array. 

 The app access processor may then begin to build a new active 
chip unit table. The first step is to calculate for each of the chip 
units, how many pages of the chip unit have acceptable 
Time2FailureEstimates, which will be referred to as the total 
acceptable active pages, for each chip unit. Upon completing the 
activities outlined in Listing One, the app node DRAM is ready to 
be initialized with data, which is written as indicated by its logical 
address into pages as indicated by its corresponding physical 
address sent from the logical to physical address translator. 

 Exascale requires periodic saving and restoring of the internal 
state of nodes due to system faults. Consider node 0 of Fig. 3, 
which has some number of internal resources. These internal 
resources, no matter what their internal architecture, will tend to 
have a data related internal state. Assume the states of the internal 
resource are at least 20 Mbytes in size. The most immediately 
available, fault tolerant memory to these resources is the DRAM 
chip array. Assuming that the maximum standard, main memory 
to be the Hadoop single window of 64 Gbytes, and that 10% 
additional pages are held in reserve to address page faults and 
balance the wear on the DRAM, the 18 chip units have 0.4 * 4 
Gbytes available to act as the snapshot-rollback store for the node. 
To maximize the MTBF for all of the shown DRAM, this 
specialized memory allocation should also be part of the logical to 
physical map for the app. However, it is a separate allocation 
scheme, which is not accessible by the app itself. It works the same 
as the app’s access processes. Also, when starting each app, the 
previous app’s state should not be visible to the next, which can be 
assumed to be part of initializing these pages at the start of the app. 

III. SUMMARY 
 A new app configurable DRAM controller is discussed. This 
controller enables the use of a logical to physical address table. 
This table is used to translate the logical addressing into physical 
addressing of an application’s main memory residing at one or 
more nodes. The logical to physical addressing insures that only 
the minimum number of DRAM chip units are powered, 
minimizing DRAM energy usage. Only the DRAM needed by an 
application are used. This logical to physical address translation 
supports evening the wear on the DRAM pages, as well as 
retirement of the DRAM pages that either have, or are likely to 
have, unrecoverable read failures. The app configurable DRAM 
controller also provides a logical object translator, which receives 
an access request for a logical object and an index referencing into 

the logical object’s data. The logical object translator responds to 
this request by determining the relevant local and non-local 
activities that need to be performed, and signals the DRAM 
controller appropriately to insure the request is processed. The 
logical object translation and data message response add another 
mechanism besides the use of caching. Logical object access 
insures that only the required data is transferred between nodes. 
This provides a significant efficiency improvement for 
applications like sparse matrix manipulation as characterized by 
the HPCG benchmark. 
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