
Application Configurable DRAM Memory
Management for HPC and Big Data

By Earle Jennings

Abstract—DRAM operation is a major cost for HPC and big data
programs. Also, DRAM has hard error reliability problems. This
paper proposes how to minimize DRAM energy consumption and
increase reliability. Performance is also maximized, and the needs of
exascale systems, which require local system state capture and
rollback, are met. Three aspects of DRAM application specific
memory management are discussed. First, each node requires a
specific amount of DRAM. A node is the minimum hardware
component needed to execute the application. Second, entire system
applications often require many nodes using DRAM, for example as
parallel processors. Third, in sparse matrix simulations of partial
differential equations, the implementation is organized to make the
mathematics transparent, not to optimize system performance. The
benchmark HPCG is used to show this. A multi-tiered approach to
managing and operating DRAMs is proposed. First, logical to
physical memory address conversion can minimize error impact,
and determine an application’s DRAM allocation. Second, this
allocation leads to only powering the needed DRAM chips, rather
than all of them. The logical addressing of the operating system can
remain stable, while the physical placement changes over time. This
minimizes the wear on the DRAM chips. Third, extending the logical
addressing to encompass large data spaces is discussed. Fourth, the
addressing scheme is extended to support distributed data objects in
terms of their defined relationships. Again, this is illustrated in terms
of HPCG.

Keywords— DRAM; memory management; codesign; HPC; big
data; exascale; HPCG; GRAPH 500

I. INTRODUCTION
DRAM is the only available storage technology able to handle

the main memory requirements of numerical, or data, intensive
computations. DRAM can be reliably manufactured in chips
storing billions of bits, and be reliably written trillions of times.
The nearest potential alternatives either cannot be reliably
manufactured to hold comparable amounts of data, or cannot be
reliably written more than a few tens of thousands of times.
However, the energy cost of operating the DRAM is a major
component of the cost of program execution [2]. DRAM also faces
hard error problems [1]. Damaged DRAM components must be
replaced, contributing a significant maintenance expense. Today,
DRAMs are controlled by memory controllers very similar in
structure to those introduced in the 1970’s. These controllers keep
all DRAMs always turned on, irrespective of how much memory
is required by an application (app). By the 1990’s, the DRAM
controllers were slaved to a cache, which is interfaced to one or
more microprocessors. These caches request a page of 64, or more

bytes, from the DRAM. This leads to access problems for sparse
matrix solvers, where only a small part of the requested page
contents are actually used. HPCG [3] is a computer benchmark
which highlights this problem. While there are many studies of
DRAM problems and potential solutions [6] to [17], this article
focuses on “Cosmic rays don’t strike twice: understanding the
nature of DRAM errors and the implications for system design”
[1]. It is a statistically relevant survey, and provides a clear set of
observations from which this approach can be derived and
understood.

This paper proposes a co-design approach to managing DRAM
operations. Hardware and software work together to reduce
DRAM reliability and communication problems, as well as
memory access overhead. This approach uniquely configures
DRAM for each application, at each application node,
dramatically reducing DRAM usage and energy consumption.
This approach is applicable across most, if not all, hardware
approaches requiring DRAMS.

 The proposed circuitry is applied in this paper to two example
apps, both using the same nodes, with dramatically different
DRAM requirements. The first app performs data mining, which
requires 256 Hadoop nodes, each using 64 Gbytes of DRAM, for
a total amount of DRAM of 16 Terra bytes.

 The second app implements a sparse matrix solver of a system
of Partial Differential Equations (PDEs) similar to the HPCG
benchmark [3]. This app uses a total of 157 Gbytes over all the
nodes. However, it triggers frequent cache misses, which cripple
performance. This app uses the finite difference scheme of HPCG
on a 280 by 320 by 540 grid with 48,384,000 grid points. This
simulation is represented by a sparse system of linear equations,
with a typical stencil of 27 grid points away from the grid
boundary, shown in Fig. 1. The stencil operator is shown in a three
dimensional (3-D) coordinate system. The stencil operator
operates upon the nearest neighbors of the point at ‘0’, which is
the point in this grid being approximated.

 The linear system is modeled by a sparse matrix , a stimulus
vector and a resulting vector , where the solution satisfies

. Suppose that an implementation uses three forms of the
stimulus vector and three forms of the response vector. Together
with the sparse matrix , there are seven global objects, which
are distributed across the nodes to implement the simulation.
Assume that each grid point includes a number (double precision
floating point) and indexing of 4 bytes to indicate the column index
of the grid point. It is common to organize the matrix into row-
compressed notation, so that all the elements of a given row are

A
x b

Ax b=

A

A

Application Configurable DRAM Memory Management for HPC and Big Data

 2 | P a g e

stored in consecutive locations. Each entry of the matrix
contains about 12 bytes for each grid point coefficient and its
column index. Given this entry size, the matrix contains about
12*27*48,384,000 bytes, which is about 157 Gbytes. Again
assume that 256 nodes are being used, each node need only contain
about 1 Gbyte.

Fig. 1. An example 27 point stencil operator as used in HPCG.

 HPCG is a typically sized grid of 280 by 320 by 540 nodes [3].
However, the sparse linear system of equations frequently codifies
these models as shown in Fig. 2. The index location (x,y,z) =
(z*N2+y)*N1+x is used to encode the indexing of the stencil into
the sparse matrix and vectors of the model of HPCG. Here, N1 is
280 and N2 is 320 so that N1*N2 = 280*320 = 89,600 double
precision numbers. The Euclidean distance between L0 and L1 =
1, whereas the difference between index locations L0 and L1 is
N1*N2. This figure shows that the nodes of this grid are
enumerated first in one direction, for instance, along the i-axis,
then along the j-axis, and then along k-axis. This scatters the
geometric locations across a wide section of the stimulus vector
components.

Fig. 2. Enumeration of grid points of Fig. 1, for L0 to L3.

 Consider the two neighboring points L0 and L1 of Fig. 2. The
Euclidean distance between L0 and L1 is 1, but distance between

their index locations in the corresponding stimulus vector
components, is 280*320 = 89,600 double precision numbers, or
716,800 bytes apart from each other. Note that two points
separated by one in the j direction are 2,240 bytes apart. If two
points are separated by two numbers in the j direction, this is
enough to trigger a cache fault when the cache page size is 4096
bytes. Caching structures force a block of memory, often at least
4K bytes in size to be fetched for the each of the 8 byte floating
point numbers required to calculate based upon one of these
stencils. To access the z-0, 1 and 2 planes for one 27 point stencil
often entails at least four data transfers to read 9 of the 27 double
precision FP numbers for a new value of z. This is a
communication cost of 4*4096 bytes to access 216 bytes, which is
more than 97% wasted.

 The first app seems to be a more demanding task, because of
its much larger demand of DRAM memory. However, the
Hadoop-compliant nodes of the first app are almost exclusively
processing just the data at their node. The caching of the Hadoop
node’s local DRAM is unlikely to have cache faults outside the
node’s DRAM. The second, HPCG app forces cache misses and
fetches from outside the node almost all the time.

Today, the DRAM is controlled by memory controllers, which
are not configured to optimize the app running on the node. A node
is the basic execution unit of an app’s programs and
configurations, each applied to internal resource(s) in one or more
of the node(s). For example, a program may instruct a
microprocessor directing multiple SIMD arrays of VLIW cores,
such as the Sunway computer employs [19]. A program may
instruct the operations of a Graphical Processing Unit (GPU). A
configuration may direct one or more FPGA(s) to operate as an
accelerator for numeric and/or data intensive computations.
Within this context, the DRAM is operated for use by a node’s
internal resources as in Fig. 3.

This paper introduces an app configurable DRAM controller,
which can optimize the app’s execution on the node, and with
other app nodes, throughout the system. The app configurable
DRAM controller interfaces with a collection of DRAM chips,
called a DRAM chip array. The DRAM chips are organized into
chip units, which can be allocated to operate, or be held in reserve.
The operational chip units are powered during the app’s execution.
The reserve chip units are not normally powered during the app’s
execution. This application configuration of the node insures that
only the chip units required by the program are consuming energy.
Each app node can have internal resources, as well as an app
configurable DRAM controller interfaced to a DRAM chip array
organized into chip units of one or more DRAM chips. Each
DRAM chip includes multiple pages organized around one or
more rows of the DRAM. The pages, which are what is actually
accessed, traverse multiple columns.

A

Application Configurable DRAM Memory Management for HPC and Big Data

 3 | P a g e

Fig. 3. A system with one or more application (app) nodes, communicating via one or more network(s).

II. LOGICAL TO PHYSICAL ADDRESSING
 There are two persistent, but relatively small, data
requirements in these nodes, which may vary from one app to
another. First, the operating system kernel will have a memory
component. Second, nodes need to support local, resilient,
response to exascale system failures, which will be discussed at
the end of this section.

 DRAM failure maps [1] indicate that specific areas receive a
disproportionate amount of failures. There is a powerful, though
implicit, consequence to these observations. A local to physical
address map can be constructed, which averages out access usage
of the physical pages of the DRAM. The logical to physical
address map is also used to retire pages before they fail. The app
logical to physical address translator uses the logical to physical
address map. The logical to physical address translator is the first
major component of the app configurable DRAM controller of Fig.
3.

 The access processor receives requests for DRAM access, and
uses the logical to physical address translator to direct the physical

access controller to perform the accesses, when they are local. An
access monitor continuously senses these local DRAM accesses to
update the chip unit status tables in Fig. 4.

Application Configurable DRAM Memory Management for HPC and Big Data

 4 | P a g e

Fig. 4. Runtime operation of the access monitor.

 The chip unit status tables are used by the access processor to
reconfigure the logical to physical translation, and to optimize
energy use for the app, as shown in Fig. 5.

Fig. 5. App configurable DRAM controller directing a

DRAM power control circuit to individually power each
chip unit.

 Given the variance in application DRAM requirements, energy
conservation issues, app access requirements, and support for
exascale class state resilience, we can formulate what needs to be
logged at the app DRAM memory controller. This logged
information guides an app specific mapping of logical to physical
addresses at each node, and across all the nodes of the application
system. The access monitor counts read and write accesses, as well
as errors that can be corrected. The logs allow access balancing for

frequently used memory regions when the logical to physical
address map is generated. However, there is a third element to this
situation, the application’s usage of the DRAM.

 Consider initializing DRAM access for the application
throughout its application nodes in the system. Each app node
knows its node address in a node total address space, its local
DRAM requirement in terms of the total DRAM requirement of
the application throughout the system, as well as a map of the local
operating system kernel in the active DRAM of the node. Given
this initialization information, several preliminary calculations
used in building the logical to physical map for the application can
be carried out with the above information, at each node
simultaneously. The total DRAM requirement is used to create the
application logical address space in terms of a starting block
address, probably 0 up to a top block address offset in terms of the
total DRAM requirement.

 The app DRAM controller operates the active chip units. Fig.
5 shows some details of Fig. 3, in which the DRAM chip array is
powered by a DRAM power control circuit directed by the
physical access controller of the app DRAM controller. The
DRAM power control may be included in the app DRAM
controller, or it may be separately packaged. Reserve DRAM chip
units are not powered up during the execution of the app. The
operational chip units are powered during the execution of the
application program. This app configuration of the DRAM
controller insures that only the chip units required by the program
are consuming energy, which minimizes DRAM energy use.

 Returning to Fig. 3, the app access processor receives access
requests, and operates the other elements of the app DRAM
controller to respond to the access request. Here are some
examples of these activities as two read requests: The app access
processor receives a first read request for DRAM at a given logical
address. The logical address may indicate the corresponding
physical address is located within the app node’s DRAM array. In
this situation, the app access processor queries the logical to
physical address translator to determine one, or more, physical
addresses required by the read request. The physical address(s),
plus possibly an access length, are provided to the physical access
controller, which is instructed by the app access processor to read
the appropriate physical page(s) of the DRAM array to perform
the requested read operation. The contents of the DRAM are sent
to the app node as the appropriate response, when the read
operation has either been without error, or has been corrected
appropriately.

 The app access processor receives a second read request at a
second logical address, which corresponds to a physical address
outside the DRAM array of this app node. The app access
processor responds by sending an access request message across
one, or more, app networks to another app node, to fetch the
requested DRAM memory contents.

 Consider how to minimize the overhead associated with the
HPCG benchmark, and sparse matrix manipulation, and other
apps, such as graph related apps as demonstrated by the Graph 500

Application Configurable DRAM Memory Management for HPC and Big Data

 5 | P a g e

benchmark [18]. The intent of the app programmer is to access the
large data objects at will, by referencing where in the large object
the access is to occur. They need the referenced data, but nothing
more than that. This is where the logical object translator of Fig. 1
enters into the picture. The logical object translator receives a
logical object identifier and an internal index list, which is
processed to create a local indicator and a non-local indicator. The
local indicator is true when at least part of the object access request
can be processed locally. The non-local indicator is true when at
least part of the object access request must be processed away from
the app node. The response to these requests is the transfer and
access of just the information required for the transfer. This
approach, by using the appropriate networks, entails some
overhead, but does not trigger the access and transfer of thousands
of unneeded bytes, as a caching system requires.

 Now consider some of the details of Fig. 4. The physical access
controller performs DRAM accesses, by communicating to a
DRAM array interface, which directly accesses one or more of the
active Chip Units in the DRAM Chip Array. The following are
communicated: Read (Rd) and Write (Wr) signaling, combined
with a Chip address (Adr), Page address (Adr). Write operations
assert the Wr data from the physical access controller to control
the DRAM array interface to write into the DRAM Chip Array.
Read operations find the DRAM array interface asserting the Rd
Data in response to its read access of the DRAM chip array.

 The access monitor intercepts these signals and an Access
count, an Error Correction Code (ECC) status report, and an Error
count (cnt) to create an update of one or more of the Chip unit
status tables 0 to ChipUnitMax, which is 17 in the current example.
Note that the ECC coding associated with the Wr data for write
operations may be generated in the physical access controller or
the DRAM array interface. The ECC coding associated with the
Rd data for read operations is generated by the DRAM array
interface in response to the DRAM chip array being read. The
DRAM array interface analyzes the Rd data and Rd ECC (not
shown) from the DRAM chip array to determine if the read is
without errors, or if the errors are detected but correctable, or if the
errors are detectable and uncorrectable. These various conditions
make up the ECC access status report, as well as the access count
for the access operation to the access monitor.

 The access monitor organizes the inputs shown in Fig. 4, and
updates one or more of the chip unit status tables. These chip unit
status tables are retained to monitor the wear on the DRAM chip
array. The tables may have an essentially non-volatile memory,
and/or may be transferred elsewhere for archiving. Note that in
some situations, these tables may be merged and potentially
organized in a different fashion, but provide comparable,
equivalent or more detailed information about the wear of the
DRAM components, possibly in support of one or more page
retirement policies [1]. These page retirement policies are shown
to remove 90% or more of the page failures. The domain of each
design and its system requirements, determines the structure and
behavior of the DRAM chips being used, and leads to decisions
about which specific policy is to be implemented.

While the DRAMs may support some form of multi-block
operations or structure in each of their chips, this discussion
focuses on the simplest model of their behavior that is likely to
apply. So while a chip status table may, or may not, exhibit
determinations of a block structure, the following is more certain
to be useful: Each chip unit table includes an array of
PageUsageSummary, possibly indexed to traverse the pages of the
chip unit. Each PageUsageSummary includes the following
indicators of usage of the page being referenced:

• NumberOfWrites approximates how many writes have
been performed on the page,

• NumberOfReads approximates how many reads have
been performed on the page,

• a PageStatus, may indicate some combination of
UseOrUnused, possibly in conjunction with
CanOrCannotBeUsed,

• a NumberOfCorrectableErrors,
• a CorrectableErrorAddressList, and
• a Time2FailureEstimate.

TotalActivePages = 0
Do
 (NewChipUnitID, NewActivePages) = CalculateMaxAndRemove(
 TotalAcceptableActivePagesList)
 AddActivePhysicalPagesToLogic2PhysicalAddr_Table(NewChipUnitID,
 NewActivePages)
 Assert Used(NewChipUnitID) in UnitPageSummary of every acceptable page
 In the NewChipUnitID
 TotalActivePages = TotalActivePages + NewActivePages
While TotalActivePages < TotalLogicalActivePageCount

Above is Listing One, showing an example of an allocation
procedure for chip units. This example minimizes energy

consumption by allocating the most usable chip units first. This
also insures a high Mean Time Between Failure (MTBF), by

Application Configurable DRAM Memory Management for HPC and Big Data

 6 | P a g e

allocating chip units with the highest number as new active pages.
Each of these pages has an acceptably large estimate for the time
to DRAM page hard failures.

 The app access processor may initialize the app logical to
physical address translator by first initializing the local logical
address table with TotalLogicalActivePageCount, which is the
logical address field range of the app node multiplied by the ideal
number of pages for the logical chip unit. Either the app access
processor or the access monitor may operate upon the chip unit
status table to update the Time2FailureEstimate of each page of
each chip unit in the DRAM array.

 The app access processor may then begin to build a new active
chip unit table. The first step is to calculate for each of the chip
units, how many pages of the chip unit have acceptable
Time2FailureEstimates, which will be referred to as the total
acceptable active pages, for each chip unit. Upon completing the
activities outlined in Listing One, the app node DRAM is ready to
be initialized with data, which is written as indicated by its logical
address into pages as indicated by its corresponding physical
address sent from the logical to physical address translator.

 Exascale requires periodic saving and restoring of the internal
state of nodes due to system faults. Consider node 0 of Fig. 3,
which has some number of internal resources. These internal
resources, no matter what their internal architecture, will tend to
have a data related internal state. Assume the states of the internal
resource are at least 20 Mbytes in size. The most immediately
available, fault tolerant memory to these resources is the DRAM
chip array. Assuming that the maximum standard, main memory
to be the Hadoop single window of 64 Gbytes, and that 10%
additional pages are held in reserve to address page faults and
balance the wear on the DRAM, the 18 chip units have 0.4 * 4
Gbytes available to act as the snapshot-rollback store for the node.
To maximize the MTBF for all of the shown DRAM, this
specialized memory allocation should also be part of the logical to
physical map for the app. However, it is a separate allocation
scheme, which is not accessible by the app itself. It works the same
as the app’s access processes. Also, when starting each app, the
previous app’s state should not be visible to the next, which can be
assumed to be part of initializing these pages at the start of the app.

III. SUMMARY
 A new app configurable DRAM controller is discussed. This
controller enables the use of a logical to physical address table.
This table is used to translate the logical addressing into physical
addressing of an application’s main memory residing at one or
more nodes. The logical to physical addressing insures that only
the minimum number of DRAM chip units are powered,
minimizing DRAM energy usage. Only the DRAM needed by an
application are used. This logical to physical address translation
supports evening the wear on the DRAM pages, as well as
retirement of the DRAM pages that either have, or are likely to
have, unrecoverable read failures. The app configurable DRAM
controller also provides a logical object translator, which receives
an access request for a logical object and an index referencing into

the logical object’s data. The logical object translator responds to
this request by determining the relevant local and non-local
activities that need to be performed, and signals the DRAM
controller appropriately to insure the request is processed. The
logical object translation and data message response add another
mechanism besides the use of caching. Logical object access
insures that only the required data is transferred between nodes.
This provides a significant efficiency improvement for
applications like sparse matrix manipulation as characterized by
the HPCG benchmark.

ACKNOWLEDGMENT
The author wishes to thank Heather Murphree. If there is any

clarity of presentation in this document, it undoubtedly stemmed
from her questions and feedback. If there are any discrepancies or
errors found herein, they are strictly the responsibility of the
author.

Application Configurable DRAM Memory Management for HPC and Big Data

 7 | P a g e

REFERENCES

[1] A. Hwang, I. Stefanovici and B. Schroeder, “Cosmic rays don’t strike twice:
understanding the nature of DRAM errors and the implications for system
design”, ASPLOS’12, March 3–7, 2012, London, England, UK. Copyright
2012 ACM 978-1-4503-0759-8/12/03

[2] DOE ASCAC Subcommittee, Bob Lucas (Subcommittee Chair), “Top ten
exascale research challenges”, Feb, 2014

[3] M. Heroux, J. Dongarra, P. Luszczek, “HPCG Benchmark Technical
Specification”, Sandia National Laboratories Albuquerque, New Mexico
87185 and Livermore, California 94550, SAND-2013-8752, Released Oct,
2013.

[4] E. Jennings, “Core module optimizing PDE sparse matrix models with
HPCG example”, July 25, 2017, pg 54-70, Supercomputing Frontiers and
Innovations, vol. 4 no. 2, downloaded July 25, 2017 from
http://superfri.org/superfri/issue/view/14, DOI: 10.14529/jsfi170205

[5] E. Jennings, “The Simultaneous Transmit And Receive (STAR) Message
Protocol”, July 25, 2017, pg 38-53, vol. 4 no. 2, downloaded July 25, 2017
from http://superfri.org/superfri/issue/view/14, DOI: 10.14529/jsfi170204

[6] K. Cho, W. Kang, H. Cho, C. Lee, S. Kang, “A Survey of Repair Analysis
Algorithms for Memories”, ACM Computing Surveys, Vol. 49, No. 3, Article 47,
Publication date: October 2016, © 2016 ACM 0360-0300/2016/10-ART47,
DOI: http://dx.doi.org/10.1145/2971481

[7] A. Bacchini, M. Rovatti, G. Furano, M. Ottavi, “Characterization of Data
Retention Faults in DRAM Devices”, unknown publication data

[8] L. Chen, “Energy-efficient can cost-effective reliability design in memory
systems”, (2014). Graduate Theses and Dissertations. Paper
13710. Downloaded from htp://lib.dr.iastate.edu/etd

[9] B. Giridhar, M. Cieslak, D. Duggal, R. Dreslinki, H. Chen, R. Patti, B. Hold,
C. Chakrabarti, T. Mudge, D. Blaauw, “Exploring DRAM Organizations for

Energy-Efficient and Resilient Exascale Memories”, © 2013 ACM 978-1-
4503-2378-9/12/11

[10] A. Gainaru, Failure Avoidance Techniques for HPC Systems Based Upon
Failure Prediction, PhD Dissertation, University of Illinois, Urbana-
Champaign, 2015

[11] J. Dongarra, T. Herault, Y. Robert, “Fault tolerance technigues for high-
performance computing”, May, 2015

[12] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, S. Gurumurthi,
“Feng Shui of Supercomputer Memory: Positional effects in DRAM and
SRAM Faults”, SC 13 November 17-21, 20913, Denver, CO, USA, © 2013
ACM 978-1-4503-2378-9/13/11

[13] V. Sridharan, N. DrBardeleben, S. Blanchard, K. Ferreira, J. Stearley, J.
Schalf, S. Gurumurthi, “Memory Errors in Modern Systems: The Goodm
The Bad, and the Ugly”, ASPLOS 2015, March 14-18, 2015, Istanbul,
Turkey, © 2015 ACM 978-1-4503,-2835-7/15/03

[14] J. Kim, Strong, Thorough, and Efficient Memory Protection against Existing
and Emerging DRAM erros, PhD Thesis, University of Texas at Austin, Dec.
2016

[15] C. Costa, Y. Park, B. Rosenburg, C. Cher, K. Ryu, “A System Software
Approach to Proactive Memory-Error Avoidance”, SC 2014 978-1-4799-
5500-8/14 $31.00 © 2014 IEEE, DOI 10.1109/SC.2014.63

[16] A. Patwari, I. Laguna, M. Schulz, S. Bagchi, “Understanding the Spatial
Characteristics of DRAM Errors in HPC Clusters”, FTXS’17, June 26, 2017,
Washington , DC, USA, © 2017 Association for Computing Machinery,
ACM ISBN 978-1-4503-5001-3/17/06,
https://doi.org/http://dx.doi.org/10.1145/3086157.3086164

[17] P. Nair, ARCHITECTURAL TECHNIQUES TO ENABLE RELIABLE
AND SCALABLE MEMORY SYSTEMS, PhD Dissertation Georgia
Institute of RTechnology, May 2017, arXiv:1704.03991v1 [cs.AR]

[18] R. Murphy, K. Wheeler, B. Barrett, J. Ang, “Introducing the Graph 500”,
Sandia National Laboratories, May 5, 2010.

[19] J. Dongarra, “Report on the Sunway TaihuLight System” June 20, 2016,
University of Tennessee, Department of Electrical Engineering and
Computer Science, Tech Report UT-EECS-16-742

